Emergence of gynodioecy in wild beet (Beta vulgaris ssp. maritima L.): a genealogical approach using chloroplastic nucleotide sequences.
نویسندگان
چکیده
Gynodioecy is a breeding system where both hermaphroditic and female individuals coexist within plant populations. This dimorphism is the result of a genomic interaction between maternally inherited cytoplasmic male sterility (CMS) genes and bi-parentally inherited nuclear male fertility restorers. As opposed to other gynodioecious species, where every cytoplasm seems to be associated with male sterility, wild beet Beta vulgaris ssp. maritima exhibits a minority of sterilizing cytoplasms among numerous non-sterilizing ones. Many studies on population genetics have explored the molecular diversity of different CMS cytoplasms, but questions remain concerning their evolutionary dynamics. In this paper we report one of the first investigations on phylogenetic relationships between CMS and non-CMS lineages. We investigated the phylogenetic relationships between 35 individuals exhibiting different mitochondrial haplotypes. Relying on the high linkage disequilibrium between chloroplastic and mitochondrial genomes, we chose to analyse the nucleotide sequence diversity of three chloroplastic fragments (trnK intron, trnD-trnT and trnL-trnF intergenic spacers). Nucleotide diversity appeared to be low, suggesting a recent bottleneck during the evolutionary history of B. vulgaris ssp. maritima. Statistical parsimony analyses revealed a star-like genealogy and showed that sterilizing haplotypes all belong to different lineages derived from an ancestral non-sterilizing cytoplasm. These results suggest a rapid evolution of male sterility in this taxon. The emergence of gynodioecy in wild beet is confronted with theoretical expectations, describing either gynodioecy dynamics as the maintenance of CMS factors through balancing selection or as a constant turnover of new CMSs.
منابع مشابه
Water Stress in Beta vulgaris: Osmotic Adjustment Response and Gene Expression Analysis in ssp. vulgaris and maritima
Beta vulgaris genus comprises wild and cultivated subspecies. The “maritima” subspecies is formed by wild or weedy accessions, well adapted to low-water potential environments; it was previously shown that B. vulgaris ssp. maritima has mechanisms of osmotic adjustment more effective than the cultivated B. vulgaris ssp. vulgaris. The response to a progressive lowering of soil potential was compa...
متن کاملDifferences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets
The structure and function of the plant microbiome is driven by plant species and prevailing environmental conditions. Effectuated by breeding efforts, modern crops diverge genetically and phenotypically from their wild relatives but little is known about consequences for the associated microbiota. Therefore, we studied bacterial rhizosphere communities associated with the wild beet B. vulgaris...
متن کاملCrop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes
Rapid identification of agronomically important genes is of pivotal interest for crop breeding. One source of such genes are crop wild relative (CWR) populations. Here we used a CWR population of <200 wild beets (B. vulgaris ssp. maritima), sampled in their natural habitat, to identify the sugar beet (Beta vulgaris ssp. vulgaris) resistance gene Rz2 with a modified version of mapping-by-sequenc...
متن کاملSpatial analysis of nuclear and cytoplasmic DNA diversity in wild sea beet (Beta vulgaris ssp. maritima) populations: do marine currents shape the genetic structure?
Patterns of seed dispersal in the wild sea beet (Beta vulgaris ssp. maritima) are predicted to be influenced by marine currents because populations are widely distributed along the European Atlantic coast. We investigated the potential influence of marine currents on the pattern of spatial genetic structuring in natural populations of sea beet. Populations were located along the French coasts o...
متن کاملEnvironmental implications of gene flow from sugar beet to wild beet--current status and future research needs.
Gene flow via seed or pollen is a basic biological process in plant evolution. The ecological and genetic consequences of gene flow depend on the amount and direction of gene flow as well as on the fitness of hybrids. The assessment of potential risks of transgenic plants should take into account the fact that conventional crops can often cross with wild plants. The precautionary approach in ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 273 1592 شماره
صفحات -
تاریخ انتشار 2006